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Topological properties of a two-dimensional polymer chain in 
the lattice of obstacles 

S K Nechaev 
Institute of Chemical Physics, USSR Academy of Sciences, 117977 Moscow, USSR 
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Abstract. In this work a new method of calculating the topological properties of a polymer 
chain in the lattice of obstacles on the plane is considered in detail. It is shown that, by 
applying the method of conformal transformations, it is possible to reduce the problem of 
calculation of the partition function of the polymer chain in a given topological state with 
respect to the lattice of obstacles to a much more simple problem of the calculation of the 
Green function of a free random walk without any topological restrictions on a Riemann 
surface, 

1. Introduction 

It is well known that polymer chains in their motion cannot cross each other without 
chain rupture. The restrictions connected with this property are called topological 
restrictions. The problem of describing the topological properties of polymer systems 
on the microscopic level was first formulated in the work by Edwards (1967), where 
the problem of calculating the polymer chain partition function in the presence of an 
uncrossable infinite line was solved completely. As was shown by Edwards, this 
problem is mathematically identical to the problem of the motion of a charged particle 
in a magnetic field and can be formulated in terms of the path integral method, which 
is well known in field theory. It was this latter circumstance that stimulated many 
scientists to work in this field, although it is noteworthy that some other (no less 
interesting) methods were developed by Prager and Frisch (1967) and by Saito and 
Chen (1973). In the papers by Brereton and Shah (1980), Tanaka (1982) and Elderfield 
(1982) the ideas of Edwards were developed to take into account the effects of excluded 
volume and to construct the gauge-invariant theory of topological restrictions using 
the Gauss linking number as a topological invariant, but real difficulties were connected 
with another problem: in concentrated polymer solutions and melts one must take into 
consideration the topological interactions of a given polymer chain with many neigh- 
bours (and not only with one chain). The use of the Gauss invariant in such a situation 
is not correct because the value of this invariant is known to be equal for topologically 
different conformations of polymer chains (this fact was first shown by Vologodskii 
et a1 (1974)). Thus, the microscopic theory of topological interactions came to the 
problem of the construction of full enough topological invariant which could be used 
for the safe identification of different topological states in the ensemble of the polymer 
chains. One of the possible solutions was suggested in the works by Vologodskii et a1 
(1974) and Frank-Kamenetskii er a1 (1975), where the special algorithm for the 
computer analysis of topologically different conformations of the polymer chain was 
elaborated. 
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Another approach to the problem of the description of the properties of concentrated 
polymer solutions and melts where the topological restrictions play a significant role 
was suggested by de Gennes (1971). The ‘polymer chain in a tube’ model proposed 
in this work and the following developments of the method by Doi and Edwards (1978) 
allowed one to describe dynamical properties of concentrated polymer solutions and 
melts without the detailed microscopic account for the entanglement effects. Thus, 
the basic advantages of this model with respect to the microscopic theory were the 
clear geometrical image and relative simplicity of the mathematical apparatus used. 

Recently in the investigation of equilibrium and dynamical properties of concen- 
trated polymer solutions and melts, another model-the ‘polymer chain in an array of 
obstacles’ model-has become more and more popular. In my opinion this is due to 
the fact that, on the one hand, this model is still geometrically simple and, on the 
other hand, in the framework of this model it is possible to take into account the effects 
of entanglements in detail. The advantages of this model with respect to the ‘polymer 
chain in a tube’ model are most clearly manifested in the investigations of the properties 
of ring polymer chains in concentrated solutions and melts because in this case the 
‘polymer chain in a tube’ model cannot be applied. Different aspects of the statistical 
properties of a polymer chain in the array of obstacles were investigated by Helfand 
and Pearson (1983), Rubinstein and Helfand (1985), Khokhlov and Nechaev (1989, 
Olvera de la Cruz et al (1986), Ternovskii and Khokhlov (1986), Cates and Deutsch 
(1986), Rubinstein (1986) and Nechaev et a1 (1987). As a rule, in these papers the 
discrete variant of the model was considered-the polymer chain was represented as 
a random walk on a lattice; in the centres of some of the cells of this lattice the 
‘uncrossable for the chain’ obstacles were placed. 

In this paper the continual consideration of the two-dimensional variant of the 
problem described above is proposed. The aim of this work is to develop in detail the 
method of conformal transformations, the basic ideas of which were briefly described 
in 1985 in the paper by Khokhlov and Nechaev. The method proposed allows us to 
unite the consideration of this problem with the approach by Edwards. This gives the 
possibility of investigating the region of applicability of the latter approach and to 
find the way to the analytical construction of the full topological invariant for the 
chain in the lattice of obstacles. 

The contents of the paper are as follows: 0 2 will be devoted to the consideration 
of statistical properties of the polymer chain in a regular lattice of obstacles on the 
plane. It will be shown that, with the use of quite simple geometrical ideas, this 
problem can be reformulated in terms of a free motion on a Riemann surface without 
any topological restrictions. The case of the dense lattice (c  << L, where c is the spacing 
of the lattice and L is the contour length of the chain) will be considered in 0 3, where 
the initial problem will be reduced to the calculation of the Green function of a free 
random walk on the Lobachevsky plane (the Riemann surface of constant negative 
curvature). In the appendix the case c >> L (the rare lattice of obstacles) will be analysed 
and the partition function obtained will be compared with that calculated by Edwards 
for the interaction of a polymer chain with a single obstacle on the plane. 

2. Polymer chain in the lattice of obstacles: a method of conformal transformations 

Let us consider the regular lattice of obstacles on the plane z (see figure 1). Without 
the loss of generality for simplicity I shall consider the lattice with elementary cell in 
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Figure 1. Polymer chain in the lattice of obstacles. The primitive path is shown by a dotted 
line. 

the form of an equilateral triangle with the length of side equal to c. Let us formulate 
the problem of calculation of the partition function P of the polymer chain of length 
L and effective segment a, which is placed on the plane z. If the chain has a fixed 
starting point (A , )  and the end (Bo) ,  in the course of the chain motion (without crossing 
the edges of the lattice) only these conformations will be available for the chain, which 
can be transformed into another conformation continuously (without rupture of the 
chain). These conformations belong to the class of topologically equivalent ones. 

The important notion connected with the chain conformation in the lattice of 
obstacles is the concept of ‘primitive path’. A primitive path can be obtained from 
the actual microscopic trajectory by roughening it up to the scale c (the spacing of 
the lattice of obstacles) and by deleting all the loops from the rough trajectory, which 
are not entangled with the obstacles. The configuration of the primitive path determines 
completely the topological state of the chain and plays the role of full topological 
invariant for the chain with fixed ends. A more exact definition of the ‘primitive path’ 
will be presented at the end of this section. 

The main idea of the method used for the calculation of the partition function of 
the chain in the lattice of obstacles P is as follows: let us suppose that the plane with 
the regular lattice of obstacles z ( x , y )  is complex (i.e. each point z of the plane 
corresponds to a complex number? + iy) and let us find the conformal transformation 
z([) otthis plane to the region i(& <) such th_at all obstacles transfer to the boundary 
of the region and the internal domain of the 5 region is free of obstacles. The random 
walk on the initial z plane transforms under this transformation on some random walk 
in the [ region. 

To construct a function z([) it is necessary to find a conformal transformation of 
the elementary cell of the lattice of obstacles-the triangle ABC of the z plane-to 
the circular zero-angled triangle of the f planet. Such a transformation will be 
performed in two steps. 

First let us consider the auxiliary conformal transformation z( w ) ,  which transfers 
the triangle ABC of the z plane to the upper half-plane Im w > 0 of the w plane. Let 

t For the sake of brevity I also denote the complex plane where the i region is placed by the symbol 
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us determine the following correspondence of points: A + A, B + 6, C + (see figure 
2(6)).  It is obvious that the lower half-plane Im w < O  corresponds to the triangle 
ABC’ of the z plane. It is easy to be convinced that the non-closed path 0, + 0 + O2 
on the z plane corresponds to the closed path 6, + 6 + 6,  which surrounds point 
on the w plane (figure 2(a, b)). In detail the problem of constructing the Riemann 
surface for such a transformation z (  w )  is clarified in a book by Hurwitz and Kourant 
(1964). The transformation z( w )  is defined by the Cristoffel-Schwartz integral: 

where B ( f ,  f )  is a beta function. Correspondence of points under transformation (2.1) 
is as follows: 

A(r  = 0 )  +A(, = 0 )  
B ( z  = c )  + E( w = 1 )  

~ ( z = c e x p ( - i ~ a ) ) + c ( w = c o ) .  
(2.2) 

Now let us construct the transformation of the upper half-plane Im w > 0 to the 
circular zero-angled triangle of the [ plane. Such a transformation is realised by means 
of automorphic functions (see, for example, Hywitz and Kourant (1964) and Golubev 
(1950)). The differential equation for the w ( 5 )  function has the form: 

where { w ( f ) }  is the so-called Schwartz derivative 

Equation (2.3) has a solution 

I C A‘ 

( 0 )  ( 6 )  

Figure 2. ( a )  Triangles ABC’ and A’BC are obtained from the initial triangle ABC by 
means of reflection with respect to the sides AB and BC. ( b )  The conformal transformation 
of the triangle ABC to the upper half-plane Im w > 0. 
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where k 2 ( f )  is the modular function, expressed as a ratio of the main periods of the 
elliptic integral and 0 2 ,  O3 are elliptic Jacoby functions (Chandrassekharan 1985). The 
correspondence of points under transformation ( 2 . 5 )  is as follows: 

A( w = 0) -9 A( f = 00) 

e( w = 00) + E(i= -1). 

i( w = 1)  + 8( [ = 0) (2.6) 

Thus, combining equations (2.1) and (2.5), the composite transformation z([) transfer- 
ring the initial triangle ABC of the z plane to the zero-angled circular triangle ABC 
of the f plane has the form 

(2.7) 

The correspondence of fundamental domains u n c r  transformation (2.7) is shown in 
figure 3. 

The transformation (2.7) solves the problem put _above: the whole z plane with the 
lattice of obstacles transforms to the half-plane Im 5 > 0 and all the obstacles tr_ansfer 
to the boundary 6 = 0 of the region Im f >  0. Thus, the internal domain Im 5 > 0 is 
free of topological restrictions. This property can be checked in a geometrical way, 
reflecting the initial triangle ABC on the z plane with respect to its own sigss and 
performing the same transformation with respect to the sides of the triangle A B e  on 
the i plane. Considering arbitrary trial contours ( 1 )  and (2) on the z plane and its 
images (7) and ( 5 )  on the i plane (figure 3(a,  b ) ) ,  it is easy to check the fact that the 
closed contour ( 1 )  which arranged the obstacle (the point A )  corresponds to the 
unclosed contour (i), but the closed contour (2) which is not entangled with any of 
obstacles corresponds to the closed contour (5). 

region Im [> 0 is 'expanded' with respect to the 
initial z plane because the coordinates of endpoints of an arbitrary trajectory in the I' 
region Im I >  0 determine: 

Generally one can say that the 

( a )  the corresponding coordinates of endpoints on the z plane; 
( b )  the topological state of a given trajectory on the z plane. 
In the i region the theorem of conformal invariance of Brownian motion is valid 

and therefore in the i region Im I>  0 a stochastic process corresponding to the initial 
random motion on the z plane will be obtained as well (It0 and McKean 1965, McKean 
1969). Under the conformal transformation the Laplace operator transforms in the 
following way: 

where 

a' a' dz --- a' a' 
A = = - + -  ax2 ay2 pi-@+* 

Taking into account the fact that the f region is free of topological restrictions (i.e. 
obstacles) the equation for partition function P in the i region can be written in the 
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Figure 3. The correspondence of fundamental domains under conformal transformation 
(2 .7) .  

usual form: 

It1 'adr. $ a A i P ( [  L )  = - - P ( &  L ) .  

The derivative dz/df can be obtained from (2.7) and its final expression is 

where 

and 

(2.10) 
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Substituting equation (2.10) into (2.9) I obtain the equation for partition function 
P ( f ,  to, L), determining the probability of the fact that the polymer chain ends are 
placed in points f and CO as 

(2.11) 

The primitive path can be defined now as the image of the segment l f - f o /  after 
transformation of (2.7) to the initial z plane. In particular, the partition function 
P ( f o ,  to, L) where the value f0 is connected with the known transformation (2.7) with 
the value zo determines the probability of the fact that the polymer chain, in which 
both ends are placed at the point zo has a zero primitive path (i.e. the polymer chain 
is not entangled with either of the obstacles of the lattice). 

3. Long polymer chain in the lattice of obstacles: random motion on the Lobachevsky 
plane 

Let us turn to (2.11) and to investigate a behaviour of a function P ( [  to, L )  in the 
limit c<< L let us use the symmetry properties of the problem considered. 

First of all let us perform the conformal transformation, which transforms the upper 
half-plane Im [> 0 to the interior of a circle IS( < 1 on the plane 5 (see figure 4): 

The correspondence of points A, E, 6 on the [ plane and its images A, B, C on the 6 
plane is as follows: 

E('= 0) +. ~ ( l =  exp(-i2r/3)) 

t( f= -1) +. ~ ( 5  = exp(i2n/3)). 
(3.2) 

Figure 4 shows the correspondence of fundamental domains under transformation 
(3.1). Comparing figures 4(b) and ( c )  it is easy to understand that the modular function 
shown in figure 4( b )  has the form of a Cayley tree (figure 4( c)). This circumstance 
was briefly noted by Khokhlov and Nechaev (1985). 

Let us consider the polymer chain in an open circle 15) < 1. If the starting point of 
the chain is placed at the origin l = 0 and its end placed at some arbitrary point l e n d  

then the coordinates d&nd(&nd, v e n d )  determine: ( a )  the coordinates of the endpoint of 
the chain on the initial z plane; ( b )  the configuration of the primitive path ( \ l end1  is 
the length of the primitive path in coordinates 6, 7, connected with the known 
transformations (2.7) and (3.1) with coordinates x, y ) .  Rewriting equation (2.9) in 6, 7) 
coordinates, the following equation is valid: 

where 

(3.4) 
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( c  I 

Figure 4. The illustration of the transformation i+ 5 (see (3 .1) ) ;  on figure 4(b) is shown 
the elliptic modular function, which topological structure has a form of a Cayley tree 
(figure 4(c) ) .  

$'= -2n/3 

Figure 5. The relief of the function Z(r ,  I)) (see (3.4)). 
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The geometrical structure of the surface Z (  r, $) ( r  and $ are the polar coordinates in 
the circle I l l <  1) is presented in figure 5 .  Equation (3.4) can be replaced by an 
essentially more simple relation, which allows us to solve ( 3 . 3 )  exactly. One must 
neglect the changing of the value Z (  r, $) inside the circular triangle (see figure 4( b ) )  
and replace the function Z ( r ,  9) by the value in the centre of the circle triangle 
considered, Z,? . After rather complicated transformations using the properties of 
Jacoby 0 functions (Chandrassekharan 1985) I obtain the approximation 

where 
- 

l m  = rm exp(i$,) 5 m  = rm ex~(-i$m)- 

Thus, in the vicinity of the centres of circle triangles equation (3 .4)  has the form 
of equation ( 3 . 5 ) .  In figure 6 the function Z, ( r )  is compared to the data of numerical 
calculation of the function ( Z ( r ) ) + ,  where ( . . . )* means the angle-average of the 
function Z ( r ,  4 ) .  In the limit llm\ + 1 the relative deviation between both curves tends 
to zero (see figure 6 ) .  Therefore when I do not take an interest in the details of a 
modular figure on scales lower than the spacing of the lattice (i.e. the length of the 
chain is much greater than the spacing of the lattice L >> c) for calculations, ( 3 . 5 )  
instead of (3 .4)  can be used. It is noteworthy that ( 3 . 5 )  determines the metrics of the 
Lobachevsky plane (Hurwitz and Kourant 1964, Golubev 1950). 

50 . 

40 . 

0 0 2  0 4  0 6  0 8  1 0  
r 

Figure 6. The function ( Z ( r ) ) ,  is shown by the full curve and the function Z n t ( r )  by the 
broken curve. 

t In other words I suppose all the values Z ( r ,  4)  inside, for example, the triangle A’BC (see figure 4(b)) 
being approximately equal to the value Z(r , , , , ,  CL,,,,) where the point m3 is the centre of the triangle considered. 
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If for some problems it is necessary to take into account the detailed metric structure 

Substituting (3.5) into (3.3) I obtain the equation describing the random motion 
of a modular figure, then (3.3) and (3.4) can be solved numerically. 

on the Lobachevsky plane in the PoincarC model 

(3.6) 

where 

I would pay attention once more to the fact that r-the distance between the chain 
ends on the Lobachevsky plane-means physically the length of the primitive path 
expressed in the units of the spacing of the lattice of obstacles. 

After transformation to the new variable 

p = 4c In[( 1 + r ) / (  1 - r)]  

the usual diffusion equation on the surface of constant negative curvature has the form 
(Karpelevich et al 1959, Gerzenstein and Vasiljev 1959, Molchanov 1975) 

- 1/2  ik A =  1 -((detg) a g -). 
(det g)’” ax’ a x k  

The metric tensor IlgikII has the form 

(3.8) 

(3.9) 

The solution of (3.7) is 

exp[-(A2/4)N] OC x exp(-x2/4A2N) 
dx  (3.10) 

‘ (p* ,  = ( z n a 2 ~ ) 3 / 2  { 2 + , c  (cosh x -cosh 2 p / ~ ) ” ~  

where N = L / a  and A’= 2/(3P?a)a2/c’. Considering the limit p / c  >> 1 it is easy to 
obtain the relation 

(3.11) 

which corresponds to one obtained earlier in the discrete case (see, for example, 
Khokhlov and Nechaev (1985))t. The function P ( p ,  N) can be used for calculation 
of any conformational characteristics of polymer chains in a given topological state 
with respect to the lattice of obstacles. In particular, the probability that the closed 
polymer chain does not become entangled with either obstacle on the plane is 

exp(-$A2N) x exp( -x2/4A2N) erfc(4Am) 
(27“2N)”2 lo &sinh(x/2) 4.rra2N 

P ( p = O ,  N ) =  dx L- (3.12) 

+ The probability ofthe fact that the length of the primitive path i s  equal to p i s  &p, N )  = P(p, N )  sinh 2p/c .  
One must compare just this relation to the relation of the paper mentioned above. 
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(compare this equation with corresponding relations obtained by Helfand and Pearson 
(1983) and Khokhlov and Nechaev (1985)). 

Thus the problem of investigating statistics of a long closed polymer chain in an 
array of obstacles is reduced to the much more simple problem of investigating effective 
random motion on the Lobachevsky plane; and the influence of the lattice of obstacles 
on chain statistics is reduced to the effective changing of metrics of the initial plane. 

The case of a short polymer chain L<< c is considered in the appendix. 

4. Conclusion 

The method proposed in the present paper allows one to reduce the problem of 
investigating topological properties of a polymer chain in a regular lattice of obstacles 
to the study of metric properties of Riemann surfaces, free of obstacles, obtained as 
a result of conformal transformation from the initial plane. It is obvious that the 
method proposed does not limit the consideration of the simplest lattice of obstacles 
and can be generalised to solve more complicated topological problems. Moreover I 
hope that the application of general geometrical ideas to this branch of the statistical 
physics of macromolecules is very useful for the construction of the microscopic theory 
of topological restrictions in concentrated polymer solutions and melts. 
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Appendix. A short polymer chain near the obstacle (L<< c) 

To investigate a solution of (2.1 1) in  the vicinity of the point A ( T A  = Im f~ = CO) (see 
figure 3 ( b ) )  let us consider the limit 6 +CO in (2.10). Presenting Jacobi 8 functions 
in power series the following relation is valid: 

X 

e;[~lexp(irrf) l= rr n = - w  ( - 1 ) " ( 2 n + l )  e x p [ i ~ ( n + f ) ~ [ l  ('41) 

and, therefore, 

e ~ ( o l e x p [ i r r ( i + i i j ) ~ } / ~ - ~ =  rr exp(-trrij) exp( i a i ) .  (A2)  

Substituting (A2)  into diffusion equation (2.11) on the f plane I obtain the equation 
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Equation (A3) can be deduced from the initial (2.9) using the conformal reflection f , ( z )  

In polar coordinates z = p ei' equation (A4) transforms to the system 

p = 3p exp( -T i j )  

( ' 4 5 )  
I T -  

c p = - [ - l T .  
3 

A number of turns of the chain n around the obstacle on the z plane plays the role 
of Gauss topological invariant and is equal to the angle distance Acp = cpb-  cpAo (see 
figure 7). Performing transformation (A5) and taking into account the fact that to one 
turn to the angle 27r correspond six successive reflections of the triangles with the 
angles 7r/3 (see figure 7(a ) )  I obtain the final equation in polar coordinates on the z 
plane: 

In (A6) 0 s cp < 27r and Po( . . . ) denotes the probability for the chain with fixed ends 
having an entanglement with the obstacle of order n = 0 (Saito and Chen 1973). The 
probabilities of different orders of entanglements are connected among themselves as 
follows: 

Po(& Po,  cp, cpo, L) = Po(P, Po,  cp -(Po, L) 

= P,(P, Po, cp -cpo+2r, L ) = .  . . 
= PAP, Po,  cp -cpo+2.rm, L). ('47) 

Equations (A6) and (A7) are solved in the paper by Saito and Chen (1973) and in 
two dimensions the solution is 

P"(P, Po,  cp -Po, L )  

La1 

Figure 7. The correspondence of the domains under the transformation (A4). 
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Thus, in the limit c >> L only the solitary obstacle interacted with the polymer chain 
instead of the whole lattice can be considered. Only in this limit the Gauss linking 
number can be considered as a full topological invariant and can be used for the safe 
classification of different topological states of the chain. 
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